실험으로 유도된 구개열 마우스의 안면골 성장에 관한 연구

연세대학교 대학원 치의학과
(지도 유영규 교수)

전운식

I. 서론

안면골에서 발생하는 선천성 기형증에 하나인 구개열의 원인은 유전인자와 환경인자들 간의 상호작용에 의한 복합적 요인에 의한 결과로 알려져 있음에도 그 발생기전은 물론 정상구개 형성에 관한 조절기전조차 명확히 밝혀져 있지 않다. 그러나 구개의 형성기전은 구개발생과정을 크게 4단계로 나눌수 있는데 첫 단계는 상악 내하방에서 구개물의 발생이며 둘째는 물의 상승 및 발현전환을 거치고, 셋째는 마주한 두 물의 상과에 융합, 마지막으로 융합상피의 유해에 따른 간섭조직의 융합이다. 이러한 과정에서 구개물의 이동에는 구개조직 기질의 성분이나 혈관 19, 25, 50, 구개의 근육육수 주축계 8, 27, 49 및 신경전달 물질 등 27, 47 내인성 요소와 허를 비롯한 구개주위의 외인성 요소들이 관여한다고 추정하고 있다.

구개물의 유발성 커티코스테론 42, hypervitaminosis A 41, X-irradiation 44, 6-aminonicotinamide 11, barbiturate diphenylhydantoin 32, methyl mercury 45, β-aminoproprionitrile 33 등이 알려져 있으며 이중에서도 cortisone은 1950년 Baxter와 Fraser 4가 구개열을 유발시키는데 사용한 약제로서 그 이후 가장 많이 사용되고 있다. corticosteroid의 구개열 유발기전에 대해서는 여러 의견이 있는 데 기질의 혈색으로서 구개안면의 성장을 저지한다는 의견이 있고 20, 36, triamcinolone acetonide 부여로 구개조직의 조직학적 변화는 없었으나 구개물기의 상층을 저지시킨다는 주장도 있고 40, 45, 46, 47, 48, 49, 50, 51, 52, 53 전제부에 카페로의 과열된 전화를 저지시킨다는 보고도 있다. 15, 17, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 구개열에 전해지는 corticosteroid는 발생중인 실험동물에 약리학적 응용 혹은 그 이하의 소량을 주어 하였을 때 구개열 유발은 물론 성장지연, 성장기능 및 안면두개골손 등의 기질을 조례하는 강력한 기형원으로 밝혀졌고 특히 항생제인 triamcinolone acetonide는 다른 corticosteroid와 엽과 비교하여 초기성 또는 높이것으로 보고되어 있으며 41, 42 국내에서 triamcinolone acetonide의 초기형적 효과에 대한 연구로는 43, 44, 45, 46 등이 있다.

그러나 이러한 연구들은 구개발생기전에 triamcinolone의 초기형적 효과만을 중점적으로 다루어서 구개형성 후에 안면골의 성장 및 형태에 관하여는 거의 보고된 바 없으며 본 실험을 통하여 안면골 구개알 마우스의 안면골 성장 및 비교연구 한 결과 다소의 전차를 얻었기에 이에 보고하는 바이다.

II. 연구재료 및 방법

가. 실험동물 및 처리

암수분리 수행하여 표준식이와 동반으로 사육된 체중 25gm 내외의 임신경계가 없는 DDY 마우스를 오전 8시부터 4시간동안 동맥시킨후 절제 후에서 발견된 것으로 보고 이날을 임신제0일로, 수정시간은 오전 10시로 간주하였다. DDY 마우스에서는 발생 제13일에 구개물기의 형
성이 시작되어 15.5일에 구개형성이 완료되며 triamcinolone acetonide(이하 TA로 약칭)에 대한 발생 시기별 반응에서 발생 13.5일에서 14일이 TA에 가장 민감하여 구개형 발생빈도가 가장 높다는 보고에 따라 이날을 TA투여날로 정하였다.

실험동물은 우선 아무것도 주사하지 않은 정상군과 TA 투여로 쓰인 무수 알콜을 투여한 대조군(대조1군) 및 TA 투여군으로 나누었고 TA 투여군은 각각 발생 제 13.5일과 14일 2회에 걸쳐 triamcinolone acetonide(Sigma사 제품)을 총 0.5 mg/kg(용적 30μl 내외)씩 대비부에 근육주사하였으며 대조군도 같은 시기에 같은 용적의 무수알콜을 주사하였다. 그 후 정상군과 대조군 및 TA 투여군 모두를 발생 제 18일에 ether 마취하여 제자리에 numbering을 한 후 실질을 측정하고 Bouin세 용액에 고정하였고 TA 처치군은 표본제작과정을 통하여 다시 구체형이 유발된 군(실험군)과 구체형이 유발되지 않은 군(대조 2군)으로 구분하였다. 또한 골화정도를 판찰하기 위해 각군에서 Bouin세 용액에 고정하기 직전에 제자리 4마리씩을 취하여 이중염색법을 시행하였다.

Bouin세 용액에 고정된 태자의 수는 표1과 같다.

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of fetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 (Normal)</td>
<td>20</td>
</tr>
<tr>
<td>G2 (Control 1)</td>
<td>24</td>
</tr>
<tr>
<td>G3 (Control 2)</td>
<td>38</td>
</tr>
<tr>
<td>G4 (Experimental)</td>
<td>26</td>
</tr>
</tbody>
</table>

나. 표본제작
1. 태자의 두개면연결 사전제작

Bouin세 용액에 고정된 태자는 hyoid bone를 포함하여 정면, 드럼, 직립 후 정중상 절단면(mid-sagittal section)을 얻기 위해 10μm 간격으로 연속절단된 표본을 현미경으로 관찰한 후 비중격 연골, 후두개, Meckel 씨 연골, 설연골(Hyoid cartilage), 뇌하수체, 청중두개 기저 연골을 통과하는 표본을 택했다. 18

선택된 표본은 H-E 염색후 Zeiss photomicroscope로 8배 확대된 사진을 얻고 이를 다시 5배 확대하여 결국 처음 표본에 비해 40배 확대된 사진을 얻었다(사진부도 설명 Figure 1, 2).

2. 골화 관찰을 위한 이중염색법

골 및 연골의 골화 정도를 염색으로 알아보기 위하여 모세관으로부터 적출한 태자는 즉시 70℃ 수조에 30초간 담가서 피부 및 지방조직을 제거하였고 또한 복강을 통해 내장을 모두 제거하였다. 그리고 골 염색을 위한 alizarin red S와 연골에 대한 alcian blue 그리고 고정을 위한 명초산 및 alcohol 등의 농도 및 양은 Kimmel 26 등의 방법에 따라 배합하였고 고정염색액의 양은 보통 표본 용적의 10배를 사용하였으며 피부와 내장이 제거된 표본은 즉시 염색·고정액에 넣어 몇 분 혼돈 후 상온에 방치하였고 고정염색액에서 육안적으로 충분히 염색이 되었다고 인정이되면 2% KOH 용액으로 옮겨 골격의 조직이 제대로 연화되면서 관절이 해리되기까지 청연시킨후 이룰 증류수와 글리세린 1:1 및 1:3 비율로 배합된 용액에 차례로 옮겨 두명화 시키면서 마지막으로 술수 글리세린에 보관하였고 구체형을 확인하기 위해 하약골을 제거한 후 구개면 및 두개골의 골화를 관찰하였다(사진부도 설명 Figure 3, 4).

다. 계측법 및 통계처리

40배로 연어진 사진위에 acetate matte 지를 대고 계측점을 (Fig. 1)을 정한 후 이 계측점을 이용하여 선계측 및 각계측 (Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6)을 시행하였고 각 군간에 어떤 유의성이 있는지를 알아보기 위해 Scheffe의 다중비교방법으로 일원분산분석(one-way ANOVA)을 시행하였다.

III. 연구성적

가. 태자의 체중

각군의 태자의 체중은 표2와 같다.
Fig. 1. Midsagittal section of 18-day DDY mouse, illustrating cephalometric landmarks: S; center of hypophysis cereberi, C; highest point of superior contour of crista galli, N; superior point of nasal septum, P; palate, H; midpoint of hyoid cartilage, T; tongue, M; anterior point of Meckel's cartilage

Fig. 2. Linear measurements of craniomaxillary region
1. S-C; cranial base length
2. C-N; maxillary height
3. S-N; maxillary length

Fig. 3. Linear measurements of mandible and tongue
4. H-T; tongue length
5. H-M; mandibular length
6. CM ⊥ T; protrusion of tongue

Fig. 4. Linear measurements of facial height
7. S-H; posterior facial height
8. C-M; anterior facial height

Fig. 5. Angular measurements of cranio-hyoid-mandibular region
9. ∠ SCN; cranio nasal angle
10. ∠ CSH; cranio hyoid angle
11. ∠ SHM; hyoid mandibular angle

Fig. 6. Angular measurements of cranio-maxillary and mandibular region
12. ∠ SCM; cranio mandibular angle
13. ∠ CSN; cranio maxillary angle
유의성 검정결과 1, 2, 3 군간에는 유의의 차가 없었으며 제 4 군 즉 구개열군은 다른 세군에 비해 저체중인것으로 나타났다.

나. 구개열 발생율

TA로 처리된 태자 68 마리중(이중혈색вал을 위해 취한 4 마리 포함) 구개열은 보인 태자는 28
마리로서 (이중혈색발에서 2 마리 포함) 구개열 발생율은 41.2 %였다.

다. 계측선 및 계측선 비율

<table>
<thead>
<tr>
<th>Table 2. Means (±S.D) of body weights in each group (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>G4</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Means (±S.D) of linear measurements of craniomaxillary region in each group (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>G4</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4. Means (±S.D) of linear measurements of mandible and tongue in each group (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>G4</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5. Means (±S.D) of linear measurements of facial height in each group (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>G2</td>
</tr>
<tr>
<td>G3</td>
</tr>
<tr>
<td>G4</td>
</tr>
<tr>
<td>p-value</td>
</tr>
</tbody>
</table>
Table 6. Means (±S.D.) of ratio of linear measurements in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>S-C/S-N</th>
<th>S-N/H-M</th>
<th>S-H/C-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>0.72 ±0.14</td>
<td>1.47 ±0.06</td>
<td>0.40 ±0.21</td>
</tr>
<tr>
<td>G2</td>
<td>0.71 ±0.02</td>
<td>1.45 ±0.06</td>
<td>0.42 ±0.22</td>
</tr>
<tr>
<td>G3</td>
<td>0.71 ±0.01</td>
<td>1.46 ±0.05</td>
<td>0.41 ±0.18</td>
</tr>
<tr>
<td>G4</td>
<td>0.70 ±0.06</td>
<td>1.41 ±0.06</td>
<td>0.42 ±0.02</td>
</tr>
</tbody>
</table>

p-value 0.373 0.000* 0.148

Table 8. Means (±S.D.) of angular measurements of cranio maxillary and mandibular region in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>< SCM</th>
<th>< CSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>72.38 ±2.70</td>
<td>25.15 ±2.04</td>
</tr>
<tr>
<td>G2</td>
<td>72.25 ±2.49</td>
<td>25.89 ±2.02</td>
</tr>
<tr>
<td>G3</td>
<td>72.54 ±2.43</td>
<td>25.47 ±2.05</td>
</tr>
<tr>
<td>G4</td>
<td>74.13 ±2.60</td>
<td>25.17 ±1.57</td>
</tr>
</tbody>
</table>

p-value 0.000* 0.012

 이제의 계측각 및 계측간을 통하여 나타난 현상은 하악골의 길이가 다른군에 비해 구개열군에서 약간 큰것으로 나타났으며 (< 0.01) 이와 관련된 계측간 즉 C-M에대한 tongue protrusion 정도 및 계측간 비율 S-N/H-M에서 유의성을 나타내었고 다른계측간 및 계측간 비율은 모든군에서 같은것으로 나타났다.
또한 계측간에서도 < SCM에서만 구개열군이 다른 세군에 비해 약간 큰것으로 나타났음과 다른 계측항목에서는 유의성이 없는것으로 나타났다.

마. 이중염색법에 의한 골화정도

정상군과 alcohol 군 그리고 TA처치군중 구개열이 발생하지 않은군, 그리고 구개열군 내군사이에 육안적으로 두부크기의 차이는 발견할 수 없었으며 골, 연골 이중 염색상 골화정도는 구 개개열군에서 전반적으로 골화가 지연되었다(사진부도 설명 Figure 3, 4).

-333-
Corticosteroid는 성숙조직에서 각종물질대사를 조성하며
ta의 발달 과정에서는 각종조직의 성숙을 촉진시키며 또한 insulin이나 thyroxin 등 성장 인자들과 함께 이차구개의 정상발달에도 필수적인 물질로 알려져있다.

그러나 corticosteroid가 정량 보다 많은 제 적절한 수준을 부여할 때 나아가서는
David Salomon 등이 corticosteroid의 과다투여가
두개안면골의 성장을 억제하기 때문에 구개엽이
발생한다고 실험을 통하여 규명하였고, 임상적으로
불임여성이 임신을 목적으로 glucocorticoid가
여러 로제즘 테이블을 무편한다는 사실을 간접적인 증거로 제시하였다.

Corticosteroid가 생체에 투입되면 그 대부분이
대사되지 않은 채 토양을 거쳐 태아에 직접적으
리 기품을 유발시킨다고 하며 corticosteroid
의 향상성과 구개형성과 관련된 주장을 요약해보
먼 3가지로 정리되는데 첫째는 corticosteroid
치의 상승은 세포내에 이득한 수용체를 증가시
켜 collagen의 항성을 억제하고 이로인해 두개안
면의 성장이 억제되어 구개엽이 유발한다고하여
제로 corticosteroid에 감수성이 높은 동물의 구
개조직에서 급속성이 높은 동물보다 steroid 수용
체 단백량이 증가되었다고 하며 동물체에 대한
전화력을 얻은 steroid보다 tricinolone acet
onide와 같은 항합 steroid에서 높으며 기형전
작 효과보다 이와 상관관계가 있을음을 입증하였다.

동체는 Walker와 Patterson 등이 corticosteroid
투여시 구개돌기의 상층지연을 실험을 통하여
써 증명하였는데 지연된 구개돌기의 상층은 허물
제거함으로써 정상적으로 상층된다하여 구개염의
원인이 허물 관련된 두개안면지연에 기인된것이라
고 주장하고있고 구개돌기상층지연후에도 두개
(cranium)의 성장을 계속되게 되면서 두개 돌기
가 성장하였을 때는 두개안면이 접합하기는 너무
벌리벼져지기 어렵다고 설명하고 있으며
Diewert와 Pratt 등은 구개돌기의 정형위 접합의
실험에 의해서 구개엽이 발생한다고하며 계
측을 통해 돌기의 상층지연과 함께 상대적으로 돌
기가 작아진다고 보고하고 있다.

생체로 corticosteroid가 구개돌기에 상층을 지연
시키지만 결국상층되며 돌기의 상층상접합도 방해
하지 않으며 오히려 상층의 퇴화과정을 지연시켜
구개형성의 마지막 단계인 간엽상음합과정을 억제
하는 것이다.

Walker와 Fraser는 구개돌기에 이동에는 구
개내 혹은 몸의 발육과정과 관련하는 어떤 가설적
인 한계점이 존재하여 이 한계점을 넘으면 구개엽
이 발생한다고 하였고 Lahti 등은 여러종의
마우스에서 corticosteroid에 대한 구개돌기의 상
층지연은 모두 발견할 수 있었으나 구개의 발생은
큰 차이를 보이러 이러한 차이는 바로 가설적인 한계
점이 존재하기 때문이라 하였고 이러한 한계점을
구성하는 요소들을 제거하으면 퇴행적 물질을 제어
해도 구개염이 발생되지 않는다고 하였다.

Walker와 Fraser는 corticosteroid의 상
층에는 구개돌기 자체내의 내적인 원이 존재한다고
주장을하였고 Larsson과 Jacobs는 sulf
urono polysaccharide가 바로 내적인 원이라고 하
었다.

구개돌기의 상층과 관련된 내성요인으로 구개의
비균유성 수축계 및 이와 관련된 신경성 현상물질
의 연관성으로서 상층상접의 구개돌기 간엽상포가 상
당량의 actin과 myosin 등 수축성 단백질을 함
성한다고 하며 또한 serotonin이나 acetylcho
line 등이 구개가동의 억제한다는 것이다.

Lessard는 수축성 단백질인 actin과 myosin
가 구개내에 존재하여 구개돌기의 운동에 크게 작
용한다고 하였다.

또한 내성요인은 구개 조직이청의 성분 및
합성으로 돌기상층전액 glycosaminoglycan이 크게
증가하며 이중 60%가 hyaluronan으로
서 이는 수분과 흰청이 높아 이의 형성과 측정
은 간 상투암 증가를 겪어 이로인해 빠(胚) 조직의
부종과 돌기의 상층이 유도된다고 보고되어있다.
또한 Hassell와 Orkin은 구개돌기 상층직점
에 상당량의 collagen이 함성을 이들은 향상
가져가격가게이 그것도 구개돌기의 장축방향으로
배열한다고하여 돌기상층과 관련있는은 시사하여
있다.
구개돌기의 상승 및 방향전환과정에서 대표적인 외인성요소로 지목되고있는 허는 둔기상승작전에 내인성 근섬유가 분화되면서 하강하며 23) 하내에 발생중인 운동중첩란에서 acetylcholine esterase 활성이 증명되면서 24) 허의하강과 구개돌기의 상승에 관련이 있음을 시사하였으며 허를 제거하거나 근이완체를 투여해도 돌기의 상승이나 구개형성이 정상으로 진행되었다고하여 이의 중요성을 부인하는 보고도 있다. 24)

이 25) 등은 triaminolone acetonide 투여로 인한 구개열유발은 구개돌기의 형태가 뒤바뀌고 향아졌으며 끝이 상당히 무디어져 있는것으로 보아 돌기자체의 변화를 주어 양측돌기의 집합체의 실패에 기인한것으로 보고하였다.

triamcinolone acetonide로 유한 구개열 감수성을 줄 Zimmerman과 Bowen26)이 A/J 마우스에서 100％, C3H 마우스에서 40％를 보고하였고 Holst 와 Mills 27)는 Wistar 백서에서 50％를 서 54)는 Sprague Dawley 백서에서 93％의 발생율을 보였고 이 56)는 DDY 마우스에서 도체와 타자 측층종소변이 클수록 구개열 발생빈도가 높다고 하였으며 84.4％의 발생율을 보였다. 그러나 본실험에서는 DDY 마우스에서 41.2％의 비교적 낮은 발생율을 보였는데 이는 타자 개체간에 도달하는 약물의 threshold가 다를수 있으며 또 같은 마우스라 할지라도 구개형성시기의 조급 쓰 차이가 있기때문인 것으로 생각된다.

본 실험에서 타자의 측층변화는 구개열군이 다른 세균에 비해 저체중 (α < 0.01)인 것으로 나타났으며 이 55)의 실험에서도 태생 18일에 실험군이 대조군에 비해 저체중인 것으로 나타났다.

Triaaminolone acetonide 투여로 인한 측층변화는 DDY 마우스에서 구개형성시기인 13.5일에서 14일에 현저한 차이를 보이다가 점차 회복되는 양상을 보인다.

due 안면골의 길이 및 각계측 항목에서는 하악골의 길이를 제외한 다른 항목은 특이한수만한 사항이 없었다. 즉 하악의 길이측면항목에서는 구개열군이 약간 긴것으로 나타났고 facial plane에 대한 책의 전후방위치도 구개열군에서 후방에 위치하는 것으로 나타났다. 그러나 이는 하악골의 길이와 내측에 서 같은것으로 나타났고 설면골 (hyoid cartilage)의 위치도 (∫ CSH) 유의한 차를 보이지 않았다 하여 발생과 구개돌기의 상승에 관련이 있을까 하여 Deuschle과 Kalter 12)에 의하면 마우스에서 자연발생적으로 발생된 구개열은 정상적인 하악의 길이 변화를 유지하며 cortisone으로 유도된 구개열은 오히려 하악의 길이가 크다고 하였다. 그러나 Chamberlain과 Nelson 11)은 백서에서,

Jelineck과 Peterka 38)는 마우스에서 하악부위가 구개열유발에 크게 기여한다고 하였으나 Shih 39) 등은 구개 형성시기에 하악의 길이 감소와 구개열 발생과는 무관하다고 하였고 세 54) 등은 구개형성시기에 현저한 하악후퇴를 보였고 점차 회복되기는 하약태생 17일째에도 대조군과 비교시 크기의 감소를 보였다고 보고하였다.

Diewert 15)는 6-aminonicotinamide를 투여한 백서에서 임신시기와는 무관하게 구개형성시기에 상악에비해 하악의 발육이 더욱 억제된다고 하였고 태생 17일에도 구개열군이 대조군에 비해 현저한 하악골의 후퇴를 보였다.

Cortisone으로 유도된 구개열마우스에서 하악골의 증가는 하악골의 premolar corpus의 길이가 증가된 것이라고 Deuschle과 Kalter 13)는 주장하며 이는 riboflavin결합으로 유도된 구개열 백서에서의 하악골 후퇴가 대조마우스보다 이것을 하악골의 과정으로 해석에서는 아니라고 하였다. 본 실험을 통하여 구개열과 하악골의 증가를 어느 원인 및 결과로 설명할수는 없으며 하악골의 길이증가에도 불구하고 구개열군의 저체중 및 미약한 골화를 설명하기에는 더욱 연구하여 규명되어야 하겠다.

V. 결 론

구개 발생시기에 triaminolone acetonide 투여했을때 태자의 저체중 및 두개 안면골의 성장 장애등에 대해서는 이미 여러 학자들의 의해 언급되었지만 구개형성후에 어떠한 성장형태를 나타
내는치를 알아보기위해 25 gm 내외의 임신경력이 없는 자성 DDY 마우스를 구개발생시킨 임신 제 13.5 일과 14 일, 2회에 걸쳐 TA를 대화부에 근육주사한후 임신 제 18 일에 실험동물을 화생시켜 얻은 태자 108 마리를 이용하여 연구한 결과 다음과 같은 결과를 얻었다.

1. Triaminolone acetonide 두여시 구개열 발
생율은 41.2% 였다.
2. 구개열군이 대조군에 비해 저체중을 보였다.
3. 구개열군이 대조군에 비해 하악골의 길이가
였다.
4. 이중염색법에 의한 골화염색 정도는 구개열군
이 대조군에 비해 약했다.
5. Facial plane (C-M)에 대한 점점 (tongue
 tip)의 전후방위치는 구개열군이 대조
 군에 비해 후방에 위치하였다.
6. 구개열군에서 facial plane (C-M)에 대한
 점점의 후방위치는 하리 길이감소나 하후후
 로 인한 것이 아니라 하악골의 길이 증가로
 나타났다.
7. 두개자에 대한 설골 (hyoid bone)의 전후방
 관계는 모든군에서 차이가 없었다.

참 고 문 헌

1. Asling, C.W., et al.: The development of
cleft palate resulting from maternal pteroyl-
glutamic (folic) acid deficiency during the
2. Atnip, R.L.: The role of surface tension in
experimentally induced elevation of embryon-
ic palatal shelves, Anat. Rec. 145:308,
1963.
and other embryo toxic effects of β-amino-
propionitrile in rats. Teratology, 10: 165-
172, 1974.
4. Baxter, M., and Fraser, F.C.: Production of
genetic defects in the offspring of female
mice treated with Cortisone, McGill Med.
effects of glucocorticoids, Am. J. Med.
6. Biddle, F. G., and Fraser, F. C.: Cortisone-
induced cleft palate in the mouse; a search
for the genetic control of the embryonic
mechanical role of the cranial base in
palatal shelf movement; an experimental
8. _______ : Elevation of lesioned palatal
of congenital cleft lip and cleft palate and
NIDR state of the art report, Teratology 6:
10. Callas, G., and Walker, B.E.: Palate morpho-
genesis in mouse embryo after X-irradiation,
palate induced by 6-aminonicotinamide late
in rat gestation, Anat. Rec. 156: 31-40,
1966.
on the mandible in association with defects
of the lip and palate, J. Dent. Res. 41: 1085-
1095, 1962.
13. Dietwert, V. M.: Correlation between mandi-
bular retrognathia and induction of cleft
palate with 6-aminonicotinamide in rat,
induced cleft palate in A/J mice: Failure of
palatal shelf contact, Teratology, 24: 149-162, 1981.

33. Olson, F.C., and Massaro, E.J.: Effects of methyl mercury of murine fetal amino acid uptake, protein synthesis and palate closure,

44. : Induction of cleft palate in mice by tranquilizers and barbiturates, Teratology. 10: 159-164, 1974.

사진부도 및 설명

Photographs of various sections of craniofacial region in DDY mouse on day 18 of gestation (plug day = day 0)

Figure 1. Mid sagittal section of the control group.
Figure 2. Mid sagittal section of the cleft palate group.
Figure 3. Palatal view of double staining in the control group.
Figure 4. Palatal view of double staining in the cleft palate group.
Figure 5. Palatal view of normal palate.
Figure 6. Palatal view of cleft palate.
Figure 7. Coronal section of the control group.
Figure 8. Coronal section of the cleft palate group.
Figure 9. Coronal section (x40) of control palate.
Figure 10. Coronal section (x40) of cleft palate.
ABSTRACT

A STUDY ON FACIAL BONE GROWTH OF PALATAL CLEFTS EXPERIMENTALLY INDUCED IN MICE

Youn Sic Chun

Department of Dental Science, Graduate School, Yonsei University

(Directed by Professor Young Kyu Ryu, D.D.S., Ph. D.)

In methods of finding causes for cleft palate, many cases have been studied by investigators using teratogenic agents. Among them, a synthetic agent known as triamcinolone acetonide (TA) was widely used. When this drug was injected into mice during palatogenesis, it induced lowered body weight and a deformed mandible. But many cases have been studied on growth changes, only of the developmental stages of the palate.

Therefore, the objective of this study was to evaluate craniofacial growth in experimentally induced cleft palate mice after finishing palatogenesis namely just before birth. Normal, alcohol treated, and TA treated DDY mice were obtained at 18-days of gestation and heads were prepared for serial sectioning in the sagittal plane. The midsagittal sections were photographically enlarged (x40) and measurements made to assess the amount of growth.

The obtained results were as follows.
1. The incidence of cleft palate was 41.2% when TA was injected.
2. The body weight of the cleft palate group was lower than the control group.
3. In the cleft palate group, mandibular length (H-M) was lighter than the control group.
4. In the cleft palate group, degree of staining was not distinct compared to the control group by the double staining method.
5. In the cleft palate group, anteroposterior posture of the tongue tip to facial plane (C−M) was more posterior than the control group.
6. The cause of posterior posture of the tongue tip to facial plane (C−M) in the cleft palate group, was not short and retracted tongue but the mandibular length was increased.
7. The anteroposterior relationship of hyoid cartilage to cranial base was the same in all groups.